
UNCLASSIFIED

UNCLASSIFIED

GOOGLE ANDROID 12 SECURITY TECHNICAL
IMPLEMENTATION GUIDE (STIG)

SUPPLEMENTAL PROCEDURES

Version 1, Release 1

14 September 2021

Developed by Google and DISA for the DoD

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

ii
UNCLASSIFIED

Trademark Information
Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our users, and do not
constitute or imply endorsement by DISA of any non-Federal entity, event, product, service, or
enterprise.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

iii
UNCLASSIFIED

TABLE OF CONTENTS

Page

1. ANDROID ENTERPRISE ..1
1.1 EMM/MDM Console ...1
1.2 DPC (Device Policy Controller) ..1
1.3 Managed Google Play ..2

2. ANDROID SECURITY OVERVIEW ...3
2.1 Android Operating System ...3
2.2 Trusted Execution Environment ..3
2.3 Tamper-Resistant Hardware ...3
2.4 Device Integrity ..4
2.5 Sandboxing ...5
2.6 Enhanced Exploit Protection ..6
2.7 Data Protection ...7
2.8 Hardware-Backed KeyStore and KeyChain ...9
2.9 Work Profile Security ..10
2.10 Network Security ...11
2.11 DNS over TLS ...11
2.12 Over-the-Air Updates...15

3. GOOGLE SECURITY SERVICES ...17
3.1 Google Play Protect ..17
3.2 SafetyNet ..17
3.3 Google Safe Browsing ...18

4. DEVICE CONFIGURATION ..19
5. PROCEDURES ..20

5.1 Device Wipe ...20
6. SPECIAL GUIDANCE ...21

6.1 Google Android Device Disposal ..21
6.2 Configuration of the Personal Space ..21

7. DOD PKI PUREBRED..22
8. ADDITIONAL CONSIDERATIONS ..23

8.1 Wearables ...23
8.2 Google Location Tracking ...23

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

iv
UNCLASSIFIED

LIST OF FIGURES

Page

Figure 1-1: Components of an Android Enterprise Solution .. 1
Figure 1-2: Managed Google Play .. 2
Figure 2-1: Tamper-Resistant Hardware Provides Numerous Protections on the Device 4
Figure 2-2: Verified Boot.. 5
Figure 2-3: Bluetooth Pairing ... 12
Figure 2-4: Remove Previously Paired Device ... 13
Figure 2-5: Over-the-Air Updates ... 15
Figure 4-1: Personal Profile and Work Profile ... 19

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

1
UNCLASSIFIED

1. ANDROID ENTERPRISE
An Android Enterprise solution is a combination of three components: The Enterprise Mobility
Management/Mobile Device Management (EMM/MDM) console, a device policy controller
(DPC), which is the EMM/MDM agent, and managed Google Play.

Figure 1-1: Components of an Android Enterprise Solution

1.1 EMM/MDM Console
EMM solutions typically take the form of an EMM console—a web application that allows IT
administrators to manage their organization, devices, and apps. To support these functions for
Android, the console must be integrated with the Application Programming Interfaces (APIs)
and User Interface (UI) components provided by Android Enterprise.

1.2 DPC (Device Policy Controller)
All Android devices managed by an organization through an EMM console must install a DPC
(Device Policy Controller) app during setup. A DPC is an agent that applies the management
policies set in the EMM console to devices. Depending on which development option is chosen,
the EMM solution can be coupled with Android’s DPC or with a custom user-developed DPC.

End users can provision a fully managed or dedicated device using a DPC identifier (e.g.,
“afw#”) or by scanning a QR code created by the EMM according to the implementation
guidelines defined in the Play EMM API developer documentation.

• The EMM’s DPC must be publicly available on Google Play, and the end user must be
able to install the DPC from the device setup wizard by entering a DPC-specific identifier
or by scanning a QR code generated by the EMM.

• Once installed, the EMM’s DPC must guide the user through the process of provisioning
a fully managed or dedicated device.

https://developers.google.com/android/work/dev-options
https://developers.google.com/android/work/dev-options
https://developers.google.com/android/management/provision-device
https://developer.android.com/work/dpc/build-dpc.html
https://developers.google.com/android/work/play/emm-api/prov-devices#set_up_device_owner_mode_afw_accts

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

2
UNCLASSIFIED

1.3 Managed Google Play
Managed Google Play is an enterprise app platform based on Google Play that is free to Android
Enterprise customers and available to integrate into an EMM solution. It combines the familiar
user experience and app store features of Google Play with a set of management capabilities
designed specifically for enterprises.

IT administrators can use managed Google Play to discover apps, view app details, purchase app
licenses, and configure granular app permissions. Typically, an IT administrator curates,
manages, and distributes apps through an EMM console.

Using Android Enterprise APIs, an EMM console can distribute apps to managed devices. Apps
can be remotely installed on a device or added to the device’s managed Google Play store.

On managed devices, managed Google Play is the user’s enterprise app store. The interface is
similar to Google Play: users can browse apps, view app details, and install them. Unlike the
public version of Google Play, users can only install apps from managed Google Play that are
allowlisted for them.

Figure 1-2: Managed Google Play

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

3
UNCLASSIFIED

2. ANDROID SECURITY OVERVIEW

2.1 Android Operating System
Android is an open source operating system (OS) built on the Linux kernel1 that provides an
environment for multiple apps to run simultaneously. These apps are signed and isolated into
application sandboxes associated with their application signature. The application sandbox
defines the privileges available to the application. Apps are generally built using Android
Runtime and interact with the OS through a framework that describes system services, platform
APIs, and message formats. Other high-level and lower-level languages, such as C/C++, are
allowed and operate within the same application sandbox.

2.2 Trusted Execution Environment
Android devices that support a lock screen and ship with Android 7.0 Nougat and above have a
secondary, isolated environment called a Trusted Execution Environment (TEE). This enables
further separation from any untrusted code. The capability is typically implemented using secure
hardware such as ARM TrustZone technology.

TEE is responsible for some of the most security-critical operations on the device, including:

• Lock screen passcode verification: Available on devices that support a secure lock
screen and ship with Android 7.0 or newer; lock screen verification is provided by TEE
unless an even more secure environment, such as tamper-resistant hardware, is available.

• Fingerprint template matching: Available on devices that have a fingerprint sensor and
ship with Android Marshmallow 6.0 or newer.

• Protection and management of KeyStore keys: Available on devices that support a
secure lock screen that ship with Android 7.0 or newer.

2.3 Tamper-Resistant Hardware
Google Android 11 and higher devices are required to ship with tamper-resistant hardware to
perform security-critical operations. This hardware is built with additional protections against
physical tampering and shares only very limited resources with the main application processor,
significantly reducing its attack surface and the potential of side channel attacks. Devices
shipped with Android 8.0 and above can use tamper-resistant hardware to verify a device’s lock
screen passcode.

1 SELinux (Security Enhanced Linux) kernel

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

4
UNCLASSIFIED

Figure 2-1: Tamper-Resistant Hardware Provides Numerous Protections on the Device

2.4 Device Integrity
Device integrity features protect the mobile device from running a tampered or compromised
OS. With companies using mobile devices for essential communication and core productivity
tasks, keeping the OS secure is essential. Without device integrity, few security properties can be
assured. Android adopts several measures to guarantee device integrity at all times.

Google’s SafetyNet Attestation service is an anti-abuse API that allows app developers and
EMM partners to assess the state of the Android devices their app is running on. The API, which
is integrated into EMM solutions, should be used as part of an abuse detection system to help
determine an Android device’s integrity.

The SafetyNet Attestation API provides a cryptographically signed attestation, assessing the
device’s integrity. To create the attestation, the API examines the device’s software and
hardware environment, looking for integrity issues and comparing with the reference data for
approved Android devices. The generated attestation is bound to the nonce that the caller app
(the EMM DPC) provides. The attestation also contains a generation timestamp and metadata
about the requesting app.

2.4.1 Verified Boot
Verified Boot is Android’s secure boot process that verifies system software before running it.
This makes it more difficult for software attacks to persist across reboots and provides users with
a safe state at boot time. Each Verified Boot stage is cryptographically signed, and each phase of
the boot process verifies the integrity of the subsequent phase prior to executing that code. Full
boot of a compatible device with a locked bootloader proceeds only if the OS satisfies integrity
checks. Verification algorithms used must be as strong as current recommendations from NIST
for hashing algorithms (SHA-256) and public key sizes (RSA-2048).

http://source.android.com/security/verifiedboot/index.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

5
UNCLASSIFIED

Figure 2-2: Verified Boot

The Verified Boot state is used as an input in the process to derive disk encryption keys. If the
Verified Boot state changes (e.g., the user unlocks the bootloader), then the secure hardware
prevents access to data used to derive the disk encryption keys used when the bootloader was
locked. Verified Boot on compatible devices running Android 9.0 and above requires rollback
protection. This means that a kernel compromise (or physical attack) cannot put an older, more
vulnerable, version of the OS on the system and boot it. Rollback protection state is also stored
in tamper-evident storage.

Enterprises can check the state of Verified Boot using KeyStore key attestation. This retrieves a
statement signed by the secure hardware attesting to many attributes of Verified Boot along with
other information about the state of the device.

2.4.2 Version Binding
To further harden and safeguard the boot process, Android devices are required to use Version
Binding. This ensures that keys are bound to the operating system and the patch level of the
system image installed on an Android device. An attacker who discovers a weakness in an old
version of the system or TEE software cannot roll a device back to the vulnerable version and
use keys created with the newer version.

In addition, when a key with a given version and patch level is used on a device that has been
upgraded to a newer version or patch level, the key is upgraded before it can be used and the
previous version of the key invalidated. In this way, as the device is upgraded, the keys will
“ratchet” forward along with the device, but any reversion of the device to a previous release will
cause the keys to be unusable.

2.5 Sandboxing
Android runs all apps inside sandboxes to prevent malicious or buggy app code from
compromising other apps or the rest of the system. Because the application sandbox is enforced
in the kernel, this enforcement extends to the entire app regardless of the specific development
environment, APIs used, or programming language. A memory corruption error in an app allows

https://developer.android.com/training/articles/security-key-attestation.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

6
UNCLASSIFIED

only arbitrary code execution in the context of that particular app, with the permissions enforced
by the OS.

Similarly, system components run in least-privileged sandboxes to prevent compromises in one
component from affecting others. For example, externally reachable components, such as the
media server and WebView, are isolated in their own restricted sandbox.

Android employs several sandboxing techniques, including Security-Enhanced Linux (SELinux),
seccomp, and file-system permissions.

2.5.1 SELinux
Android uses SELinux to enforce mandatory access control (MAC) over all processes and apps,
including processes running with root and superuser privileges. SELinux provides a centralized
auditable security policy that can be used to strongly separate processes from one another.
Android devices implement SELinux policy on a per-domain basis in enforcing mode—no
permissive mode domains are allowed. Illegitimate actions that violate policy are blocked and all
violations (denials) are logged by the kernel. They are then readable using the dmesg and logcat
command-line tools.

As of Android 8.0, with Project Treble, SELinux is used to enforce a separation between the
framework and the device-specific vendor components. They run in different processes and
communicate with each other via a set of standard vendor interfaces implemented as Hardware
Abstraction Layers (HALs). Device original equipment manufacturers (OEMs) can create a HAL
implementation that runs in its own sandbox and is only permitted to access the hardware driver
it controls, with permissions granted to the process limited to only those required to do its job.
On the framework side, the client runs in a sandbox that does not allow it access to hardware
drivers and other permissions and capabilities needed by the HAL implementations.

2.5.2 Filesystem Sandboxing
Android uses Linux filesystem-based protection to further isolate application resources. Android
assigns a unique user ID (UID) to each application and runs it as that user in a separate process.
By default, apps cannot access each other’s files or resources, just as different users on Linux are
isolated from each other.

2.6 Enhanced Exploit Protection
Android 10 and above continues the effort to offer exploit protection such as Kernel/Control
Flow Integrity and Integer Overflow Sanitization. New compiler-based mitigations have been
added to make bugs harder to exploit and prevent certain types of bugs from becoming
vulnerabilities. Android 10 and above expands existing compiler mitigations, which directs the
runtime operations to safely abort when undefined behavior occurs. Android 11 and higher
implements error detection with GWP-Asan, which is a native memory allocator.

https://source.android.com/security/selinux/
https://developer.android.com/studio/command-line/logcat
https://source.android.com/devices/architecture/treble
https://source.android.com/devices/architecture/hal
https://source.android.com/devices/architecture/hal
https://source.android.com/devices/tech/debug/intsan

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

7
UNCLASSIFIED

Some vulnerabilities are exploited by attackers changing the normal control flow of an
application to perform arbitrary malicious activities with all the privileges of the exploited
application. Android now requires Control flow integrity (CFI), a security mechanism that
disallows changes to the original control flow graph of a compiled binary, making it significantly
harder to perform such attacks.

2.7 Data Protection
Android uses industry-leading security features to protect user data. The platform creates an
application environment that protects the confidentiality, integrity, and availability of user data.

2.7.1 File-Based Encryption
Encryption is the process of encoding user data on an Android device using an encryption key to
prevent an unauthorized party from accessing data. Android 10 and above smartphones and
tablets use file-based encryption (FBE), which allows different files to be encrypted with
different keys that can be unlocked independently.

Direct Boot enables encrypted devices to boot straight to the lock screen, alarms to operate,
accessibility services to be available, and phones to receive calls before a user has provided their
credentials.

With file-based encryption and APIs to make apps aware of encryption, it is possible for apps to
operate within a limited context before users have provided their credentials while still protecting
private user information.

On an FEB-enabled device, each device user has two storage locations available to apps:
Credential Encrypted (CE) storage and Device Encrypted (DE) storage.

CE, the default storage location, is only available after the user has unlocked the device. CE keys
are derived from a combination of user credentials and a hardware secret. It is available after the
user has successfully unlocked the device the first time after boot and remains available for
active users until the device shuts down, regardless of whether the screen is subsequently locked.

DE is a storage location available during Direct Boot mode and after the user has unlocked the
device. DE keys are derived from a hardware secret available only after the device has performed
a successful Verified Boot.

By default, apps do not run during Direct Boot mode. If an app needs to take action during Direct
Boot mode, such as an accessibility service (e.g., Talkback) or an alarm clock app, the app can
register components to run during this mode.

DE and CE keys are unique and distinct—no user’s CE or DE key will match another. File-based
encryption allows files to be encrypted with different keys, which can be unlocked
independently. All encryption is based on AES-256 in XTS mode. Due to the way XTS is
defined, it needs two 256-bit keys. In effect, both CE and DE keys are 512-bit keys.

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://developer.android.com/training/articles/direct-boot.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

8
UNCLASSIFIED

By taking advantage of CE, file-based encryption ensures a user cannot decrypt another user’s
data. This is an improvement on full-disk encryption where there is only one encryption key, so
all users must know the primary user’s passcode to decrypt data. Once decrypted, all data is
decrypted.

2.7.2 Metadata Encryption
In addition to file-based encryption, Android 9 and above smartphones can use metadata
encryption. With metadata encryption, a single key present at boot time encrypts file system
metadata that is not otherwise encrypted by file-based encryption (FBE). This key is protected by
Keymaster, which in turn is protected by Verified Boot.

More information about FBE and its related set of features can be found here.

2.7.3 Lock Screen
Both fingerprint template matching and passcode verification can only take place on secure
hardware with rate limiting (exponentially increasing timeouts) enforced. Android’s GateKeeper
throttling is also used to prevent brute-force attacks. After a user enters an incorrect password,
GateKeeper APIs return a value in milliseconds in which the caller must wait before attempting
to validate another password. GateKeeper will ignore any attempts before the defined amount of
time has passed. Gatekeeper also keeps a count of the number of failed validation attempts since
the last successful attempt. These two values together are used to prevent brute-force attacks of
the Target of Evaluations’ (TOE’s) password.

For biometric fingerprint authentication, the user can attempt five failed fingerprint unlocks
before fingerprint is locked for 30 seconds. After the 20th cumulative attempt, the device locks
the fingerprint until the password is entered.

Android offers APIs that allow apps to use fingerprints for authentication and users to
authenticate by using their fingerprint scans on supported devices. These APIs are used in
conjunction with the Android KeyStore system. Android 11 and higher uses the Biometric
Manager Authenticator interface, which defines the types of authentication that applications can
require: Biometric Strong, Biometric Weak, and Device Credential.

2.7.4 Additional Authentication Methods
Android supports the Trust Agent framework to unlock the device. Google Smart Lock uses that
framework to allow a device to remain unlocked as long as it stays with the user, as determined
by certain user presence or other signals.

However, note that Smart Lock does not meet the same level of assurance as other unlock
methods on Android and is not allowed to unlock auth-bound KeyStore keys. Organizations can
disable this using the KEYGUARD_DISABLE_TRUST_AGENTS flag. In this STIG, Smart
Lock is not currently approved for use.

https://source.android.com/security/encryption/metadata
https://source.android.com/security/encryption/metadata
https://source.android.com/security/encryption/file-based
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/training/articles/keystore.html
https://get.google.com/smartlock/
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

9
UNCLASSIFIED

Android 11 and higher include additional support for auth-per-use keys that require the user to
present a biometric credential or device credential each time the app needs to access data
protected by the key.

2.8 Hardware-Backed KeyStore and KeyChain

2.8.1 KeyStore
The Android KeyStore class allows a user to manage private keys in secure hardware to make
them more difficult to extract from the device. It was introduced in Android 4.3 and focuses on
apps storing credentials used for authentication, encryption, or signing.

KeyStore supports symmetric cryptographic primitives such as AES (Advanced Encryption
Standard) and HMAC (Keyed-Hash Message Authentication Code) and asymmetric
cryptographic algorithms such as RSA and EC. Access controls are specified during key
generation and enforced for the lifetime of the key. Keys can be restricted to be usable only after
the user has authenticated and only for specified purposes or with specified cryptographic
parameters.

Additionally, version binding binds keys to an operating system and patch level version. This
ensures that an attacker who discovers a weakness in an old version of system or TEE software
cannot roll a device back to the vulnerable version and use keys created with the newer version.
The KeyStore is implemented in secure hardware. This guarantees that even in the event of a
kernel compromise, KeyStore keys are not extractable from the secure hardware.

2.8.2 KeyStore Key Attestation
Android 7 and above smartphones support Key Attestation, which empowers a server to gain
assurance about the properties of keys. Devices that support Google Play are provisioned at the
factory with an attestation key generated by Google. The secure hardware on such devices can
sign statements with the provisioned key, which attests to properties of keys protected by the
secure hardware (for example, the key was generated and cannot leave the secure hardware).
Attestation fields include purpose, padding, activate DateTime, and authTimeout. Key attestation
better enables the location of important properties about the device, such as the OS version,
patch level, and whether it passed Verified Boot.

More information about verifying hardware-backed keys with Key Attestation is located here.

2.8.3 KeyChain
The KeyChain class allows apps to use the system credential storage for private keys and
certificate chains. KeyChain is often used by Chrome, Virtual Private Network (VPN) apps, and
many enterprise apps to access keys imported by the user or by the mobile device management
app.

https://developer.android.com/reference/java/security/KeyStore.html
https://source.android.com/security/keystore/features.html
https://source.android.com/security/keystore/version-binding
https://source.android.com/security/keystore/attestation
https://developer.android.com/training/articles/security-key-attestation
http://developer.android.com/reference/android/security/KeyChain.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

10
UNCLASSIFIED

While KeyStore is for non-shareable app-specific keys, KeyChain is for keys meant to be shared
across profiles. For example, the mobile device management agent can import a key that Chrome
will use for an enterprise website.

2.9 Work Profile Security
Work profile mode is initiated when the DPC initiates a managed provisioning flow. The work
profile is based on the Android multi-user concept, where the work profile functions as a
separate Android user segregated from the primary profile. The work profile shares common UI
real estate with the primary profile. Apps, notifications, and widgets from the work profile show
up next to their counterparts from the primary profile and are always badged to indicate the type
of app.

With the work profile, enterprise data does not intermix with personal application data. The work
profile has its own apps, downloads folder, settings, and KeyChain. It is encrypted using its own
encryption key and can have its own passcode to gate access.

The work profile is provisioned upon installation, and the user can only remove it by removing
the entire work profile. Administrators can remotely instruct the device policy client to remove
the work profile, for instance, when a user leaves the organization or a device is lost or stolen.
Whether the user or an IT administrator removes the work profile, user data in the primary
profile remains on the device.

A DPC running in profile owner mode can require users to specify a security challenge for apps
running in the work profile. The system shows the security challenge when the user attempts to
open any work apps. If the user successfully completes the security challenge, the system
unlocks the work profile and decrypts it if necessary.

2.9.1 Separate Work Challenge
Android 7.0 and higher support the use of a separate work challenge to enhance security and
control. The work challenge is a separate passcode that protects work apps and data.
Administrators managing the work profile can set the password policies for the work challenge
differently from the policies for other device passwords. Administrators managing the work
profile set the challenge policies using the usual DevicePolicyManager methods, such as
setPasswordQuality() and setPasswordMinimumLength(). The primary device lock can be
configured using the DevicePolicyManager instance returned by the
DevicePolicyManager.getParentProfileInstance() method.

As part of setting up a separate work challenge, users may also elect to enroll fingerprints to
unlock the work profile more conveniently. Fingerprints must be enrolled separately from the
primary profile as they are not shared across profiles.

The work challenge is verified within secure hardware to protect against brute-force attacks. The
passcode, mixed in with a secret from the secure hardware, is used to derive the disk encryption

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.ln3pexhgp74y
https://developers.google.com/android/work/prov-devices#profile_owner_provisioning_methods
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

11
UNCLASSIFIED

key for the work profile to ensure an attacker cannot derive the encryption key without either
knowing the passcode or breaking the secure hardware.

The STIG does not require the use of separate work challenge.

2.9.2 COPE Deployments and User Privacy
Google Android 12 devices deployed using COPE will have enhanced privacy for users.
Personal apps in the personal profile cannot be configured, monitored, or enumerated by an
MDM. Allowlists and blocklists should be used to permit or block specific applications from use
in the personal profile. It is highly recommended that DoD mobile service providers
deploy/redeploy all Android phones using Zero-Touch with personal app allowlists/blocklists to
provide visibility on which personal apps are installed on managed devices.

2.10 Network Security
In addition to data-at-rest security (protecting information stored on the device), Android
provides network security for data in transit to protect data sent to and from Android devices.
Android provides secure communications over the internet for web browsing, email, instant
messaging, and other internet apps by supporting Transport Layer Security (TLS), including TLS
v1.0, TLS v1.1, TLS v1.2, and TLS v1.3. Android 10 and 11 default to TLS v1.3.

2.11 DNS over TLS
Android includes built-in support for DNS over TLS in Android 10 and higher. Devices will
automatically upgrade to DNS over TLS if a network’s DNS server supports it. Android then
sends all DNS queries over a secure channel to this server or marks the network as “No internet
access” if it cannot reach the server. DNS over TLS mode automatically secures the DNS queries
from all apps on the system.

2.11.1 Bluetooth
Follow the steps below to pair and connect using Bluetooth:

Pair:

1. Open the phone or tablet’s Settings app .
2. Tap Connected devices >> Connection preferences >> Bluetooth.
3. Ensure Bluetooth is turned on.
4. Tap Pair new device.
5. Tap the name of the Bluetooth device to be paired with the phone or tablet.
6. Follow any on-screen steps.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

12
UNCLASSIFIED

Figure 2-3: Bluetooth Pairing

Connect:

1. Open the phone or tablet’s Settings app .
2. Tap Connected devices >> Connection preferences >> Bluetooth.
3. Ensure Bluetooth is turned on.
4. In the list of paired devices, tap a paired but unconnected device.

Note: When the phone/tablet and the Bluetooth device are connected, the device will show as
“Connected” in the list.

Note: If the phone is connected to another device through Bluetooth, at the top of the screen, a
Bluetooth icon will be displayed.

Remove Previously Paired Device:

1. Open the phone or tablet’s Settings app .
2. Tap Connected devices >> Previously connected devices.
3. Tap the gear icon to the right of the device to be unpaired.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

13
UNCLASSIFIED

4. Tap “Forget” and then confirm in the pop-up window by tapping “Forget device”.

Figure 2-4: Remove Previously Paired Device

For additional support information around Bluetooth, refer to this support link.

2.11.2 Wi-Fi
Android supports the WPA2-Enterprise (802.11i) protocol, which is specifically designed for
enterprise networks and can be integrated into a broad range of Remote Authentication Dial-In
User Service (RADIUS) authentication servers. Android 10 and above support WPA3.

IT admins can silently provision enterprise Wi-Fi configurations on managed devices, including:

• SSID, via the EMM’s DPC
• Password, via the EMM’s DPC
• Identity, via the EMM’s DPC
• Certificate for clients’ authorization, via the EMM’s DPC
• CA certificate(s), via the EMM’s DPC

https://support.google.com/pixelphone/answer/2819579?hl=en
https://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#SSID
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setPassword(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setIdentity(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setClientKeyEntry(java.security.PrivateKey,%20java.security.cert.X509Certificate)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setCaCertificate(java.security.cert.X509Certificate)

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

14
UNCLASSIFIED

IT administrators can lock down Wi-Fi configurations on managed devices to prevent users from
creating new configurations or modifying corporate configurations.

IT administrators can lock down corporate Wi-Fi configurations in either of the following
configurations:

• Users cannot modify any Wi-Fi configurations provisioned by the EMM but may add and
modify their own user-configurable networks (for example, personal networks).

• Users cannot add or modify any Wi-Fi network on the device, limiting Wi-Fi
connectivity to networks provisioned by the EMM.

When the device tries to connect to a Wi-Fi network, it performs a standard captive portal check
that bypasses the full tunnel VPN configuration. The administrator must turn off the captive
portal check physically on the device before enrolling it into the MDM by completing the steps
below:

1. To enable Developer Options, tap Settings >> About and then tap “Build number” five
times until the Developer options have been enabled.

2. To enable Android Debug Bridge (ADB) over USB, tap Settings >> System >>
Advanced >> Developer options and then scroll down to USB debugging and enable the
toggle to “On”.

3. To connect the device to a workstation with ADB installed, type “adb shell settings put
global captive_portal_mode 0” and then tap “enter”.

4. To verify the change, type “adb shell settings get global captive_portal_mode”. Ensure
the return value is “0”.

5. To turn off Developer options, tap Settings >> System >> Advanced >> Developer
options, and then toggle the “On” option to “Off” at the top.

If a Wi-Fi connection unintentionally terminates, the end user must reconnect to reestablish the
session.

2.11.3 VPN
Android supports securely connecting to an enterprise network using VPN:

• Always-On VPN – The VPN can be configured so that apps cannot access the network
until a VPN connection is established to prevent apps from sending data across other
networks.
o Always-On VPN supports VPN clients that implement VpnService. The system

automatically starts that VPN after the device boots. Device owners and profile
owners can direct work apps to always connect through a specified VPN.

o Additionally, users can manually set Always-On VPN clients that implement
VpnService methods using Settings >> More >> VPN. Always-On VPN can also be
enabled manually from the settings menu.

• Per User VPN – On multi-user devices, VPNs are applied per Android user; all network
traffic is routed through a VPN without affecting other users on the device. VPNs are
applied per work profile, which allows an IT administrator to specify that only their

https://developer.android.com/reference/android/provider/Settings.Global#WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN
https://developer.android.com/reference/android/os/UserManager#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/net/VpnService.html
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.ln3pexhgp74y
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

15
UNCLASSIFIED

enterprise network traffic goes through the enterprise-work profile VPN and not the
user’s personal network traffic.

• Per Application VPN – Enables VPN connections on allowed apps and prevents VPN
connections on disallowed apps.

2.12 Over-the-Air Updates
Over the Air (OTA) updates, which include baseband processor updates, use public key chaining
to the Root Public Key, a hardware protected key whose SHA-256 hash resides inside the
application processor. If this verification fails, the software update will fail and the update will
not be installed. Devices with Android 8 and above also provide roll-back protection for OTA
updates to prevent a user from installing a prior/previous version of software by check.

Android devices with Android 9 and above leverage A/B system updates, also known as
seamless updates. This approach ensures that a workable booting system remains on the disk
during an OTA update and reduces the likelihood of an inactive device after an update, resulting
in fewer device replacements and device reflashes at repair and warranty centers. Other
commercial-grade operating systems, such as ChromeOS, also use A/B updates successfully.

Figure 2-5: Over-the-Air Updates

https://source.android.com/devices/tech/ota/ab

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

16
UNCLASSIFIED

The user will receive a notification when an update is made available. No special configuration
will be required to ensure a secure update process.

In Android 10 and above, administrators of fully managed devices can install system updates via
a system update file. Manual system updates allow IT administrators to do the following:

• Test an update on a small number of devices before installing them widely.
• Avoid duplicate downloads on bandwidth-limited networks.

Stagger installations or update devices only when not being used.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

17
UNCLASSIFIED

3. GOOGLE SECURITY SERVICES

3.1 Google Play Protect
Google Play Protect is a powerful threat detection service that actively monitors a device to
protect it, its data, and its apps from malware. The always-on service is built into any device that
has Google Play, protecting more than 3 billion devices.

Google Play Protect regularly scans all the apps on a device, including any not installed from the
Play Store, for harmful behavior or security risks. If it detects an app containing malware, it
notifies the user, who can then uninstall the application. Google Play Protect can also remove
malicious apps automatically as part of its prevention initiative and use the information it gathers
to improve the detection of potentially harmful applications (PHAs). In addition, the user can opt
to have unknown apps sent to Google for better detection information.

Google Play Protect is available on devices enabled with Google Mobile Services. On devices
running Android 4.2 or higher, users can opt out of Google Play Protect, although keeping it on
is recommended.

An enterprise can further minimize the potential for malware by using the
DISALLOW_INSTALL_APPS user restriction to prevent users from installing any apps to their
device when fully managed. DISALLOW_INSTALL_UNKNOWN_SOURCES allows an
organization to restrict users to only install apps from system sources such as the Play Store.
ENSURE_VERIFY_APPS can disable the ability to turn off app verification through Google
Play Protect for fully managed devices or the work profile.

3.2 SafetyNet
SafetyNet is a set of Google Play Protect APIs that protects apps against security threats. This
series of APIs can mitigate against device tampering, bad URLs, PHAs, and fake users.

The SafetyNet Attestation API provides several tools to determine the security of the Android
environment for apps. These APIs analyze the devices that have installed the application. The
service attests if the device is known to Google as CTS compatible. The return value indicates to
the calling application (for example, an EMM Agent or other enterprise application) whether the
device is a known device running a known build. Additionally, the service provides a third-party
API in Google Play services, using GoogleApiClient, which returns a value indicating whether
the device is in the claimed state.

The SafetyNet Safe Browsing API offers services to determine if Google has marked a URL as a
known threat. SafetyNet implements a client for the Safe Browsing Network Protocol v4
developed by Google. Both the client code and the v4 network protocol were designed to
preserve users’ privacy and keep battery and bandwidth consumption to a minimum. Enterprises
can use this API to take full advantage of Google’s Safe Browsing service on Android in the
most resource-optimized way and without implementing its network protocol.

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_APPS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#ENSURE_VERIFY_APPS
https://developer.android.com/training/safetynet/attestation
https://source.android.com/compatibility/cts-intro.html
https://developers.google.com/android/reference/com/google/android/gms/common/api/GoogleApiClient
https://developer.android.com/training/safetynet/safebrowsing

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

18
UNCLASSIFIED

The SafetyNet service also includes the SafetyNet reCAPTCHA API, which protects apps from
malicious traffic. This API uses an advanced risk analysis engine to protect apps from spam and
other abusive actions. If the service suspects the user interacting with the app might be a bot
instead of a human, it serves a CAPTCHA that a human must solve before the app can continue
executing.

The SafetyNet Verify Apps API allows an app to interact programmatically with Google Play
Protect to determine if known potentially harmful apps are installed. If an app handles sensitive
user data, such as financial information, developers should confirm that the current device is
protected against malicious apps and is free of apps that may impersonate it or perform other
malicious actions. If the security of the device does not meet the minimum security posture,
developers can disable functionality within the app to reduce the danger to the user.

3.3 Google Safe Browsing
Google Safe Browsing helps protect more than four billion devices every day by showing
warnings to users when they attempt to navigate to dangerous sites or download dangerous files.
Safe Browsing also notifies webmasters when their websites are compromised by malicious
actors and helps them diagnose and resolve the problem so that their visitors stay safer. Safe
Browsing protections work across Google products and power safer browsing experiences across
the internet.

https://developer.android.com/training/safetynet/recaptcha
https://developer.android.com/training/safetynet/verify-apps.html

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

19
UNCLASSIFIED

4. DEVICE CONFIGURATION
Work profiles on company-owned devices are for Government-furnished devices used for both
work and personal purposes. The organization still manages the entire device; however, the
separation of work data and apps into a work profile allows organizations to enforce two separate
sets of policies. For example:

• A stronger set of policies for the work profile that applies to all work apps and data
• A more lightweight set of policies for the personal profile that applies to the user’s

personal apps and data

Figure 4-1: Personal Profile and Work Profile

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

20
UNCLASSIFIED

5. PROCEDURES

5.1 Device Wipe
Google Android 10 and above devices can be wiped by a factory data reset, EMM, or when the
failed authentication limit is reached. Pre-installed apps in the Data partition will be wiped from
the device after a device wipe. If any of those apps are configured in the application disable list,
the policy will no longer be effective, and the user will not be prevented from installing them.
The only solution is to both uninstall/disable the unwanted apps and use either application
installation allowlisting or blocklisting.

• For application installation allowlisting, the unwanted apps will be implicitly blocklisted
(all apps blocklisted), and the unwanted apps will not be allowlisted.

• For application installation blocklisting, the unwanted apps will be explicitly blocklisted.

Application installation blocklisting must only be used if the Authorizing Official (AO) has not
approved unrestricted use of personal apps where a personal and work profile exists.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

21
UNCLASSIFIED

6. SPECIAL GUIDANCE

6.1 Google Android Device Disposal
Follow the procedure below prior to disposing of (or transferring to another user) Android
devices that have never been exposed to classified data using site property disposal procedures
for mobile devices.

Follow the device manufacturer’s instructions for wiping all user data and installed applications
from the device memory.

6.2 Configuration of the Personal Space
DoD mobile service providers may allow users full access to the Google Play app store for the
personal space, including downloading and installing Google Play apps and syncing personal
data on the device with personal cloud data storage accounts when ALL of the following
conditions have been met:

• The site AO has approved full access to the Google Play app store for the personal space,
including downloading and installing Google Play apps into the personal space and
syncing personal data on the device with personal cloud data storage accounts; written
approval must be available for any system compliance review.

• The site AO has provided guidance on acceptable use and restrictions, if any, on
downloading and installing personal apps and data (music, photos, etc.) on the Google
Android device personal space (guidance can be added to user training or the User
Agreement).

• Site mobile devices are configured with a technology used for data separation between
work apps and data and personal apps and data that is NIAP certified.
o Currently, Android Enterprise (AE) is the only NIAP-certified technology for

application separation for Google Android mobile devices.
• The site EMM is configured to restrict the download of apps from all third-party app

stores.
• The EMM or user restricts the use of DoD VPN profiles within the personal space.
• Site mobile device users receive training on known Google Play application risks and

required STIG controls that must be enabled by the user (User-Based Enforcement).
o See STIG requirement GOOG-12-009800 for more information.

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

22
UNCLASSIFIED

7. DOD PKI PUREBRED
Purebred is a key management server and set of apps for mobile devices that provides a secure,
scalable method of distributing software certificates for DoD PKI subscribers’ use on
commercial mobile devices.

Requirements for Google Android devices credentialed using DoD PKI Purebred are as follows:

• Users are responsible for maintaining positive control of their credentialed devices; the
DoD PKI certificate policy requires subscribers to maintain positive control of the
devices that contain private keys and to report any loss of control so the credentials can
be revoked.

• Upon device retirement, turn in, or reassignment, ensure a factory data reset is performed
prior to device handoff; follow mobility service provider decommissioning procedures as
applicable.

Additional information is available at https://cyber.mil/pki-pke/purebred/.

https://cyber.mil/pki-pke/purebred/

UNCLASSIFIED
Google Android 12 Supplemental Procedures, V1R1 DISA
14 September 2021 Developed by Google and DISA for the DoD

23
UNCLASSIFIED

8. ADDITIONAL CONSIDERATIONS

8.1 Wearables
The use of virtual reality (VR) wearables with a DoD-owned Google Android 12 device is
prohibited. VR wearables are considered a personal use product with no DoD mission
requirement.

8.2 Google Location Tracking
DoD policy memorandum “Use of Geolocation-Capable Devices, Applications, and Services,”
03 August 2018, prohibits the use of geolocation-capable devices, applications, and services on
DoD mobile devices in designated operational areas (OAs). Independent researchers and DISA
analysis has determined that even when “Location History” is disabled, Google continues to
store location data on the mobile device2. Therefore, AOs should consider additional actions to
limit Google tracking mobile devices when these devices are operated in OAs.

2 A copy of DISA’s “Google Location Tracking on Samsung Devices” white paper can be requested by sending an
email to disa.stig_spt@mail.mil.

mailto:disa.stig_spt@mail.mil

	1. Android Enterprise
	1.1 EMM/MDM Console
	1.2 DPC (Device Policy Controller)
	1.3 Managed Google Play

	2. Android Security Overview
	2.1 Android Operating System
	2.2 Trusted Execution Environment
	2.3 Tamper-Resistant Hardware
	2.4 Device Integrity
	2.4.1 Verified Boot
	2.4.2 Version Binding

	2.5 Sandboxing
	2.5.1 SELinux
	2.5.2 Filesystem Sandboxing

	2.6 Enhanced Exploit Protection
	2.7 Data Protection
	2.7.1 File-Based Encryption
	2.7.2 Metadata Encryption
	2.7.3 Lock Screen
	2.7.4 Additional Authentication Methods

	2.8 Hardware-Backed KeyStore and KeyChain
	2.8.1 KeyStore
	2.8.2 KeyStore Key Attestation
	2.8.3 KeyChain

	2.9 Work Profile Security
	2.9.1 Separate Work Challenge
	2.9.2 COPE Deployments and User Privacy

	2.10 Network Security
	2.11 DNS over TLS
	2.11.1 Bluetooth
	2.11.2 Wi-Fi
	2.11.3 VPN

	2.12 Over-the-Air Updates

	3. Google security services
	3.1 Google Play Protect
	3.2 SafetyNet
	3.3 Google Safe Browsing

	4. Device Configuration
	5. Procedures
	5.1 Device Wipe

	6. SPECIAL GUIDANCE
	6.1 Google Android Device Disposal
	6.2 Configuration of the Personal Space

	7. DoD PKI Purebred
	8. Additional CONSIDERATIONS
	8.1 Wearables
	8.2 Google Location Tracking

