
UNCLASSIFIED

UNCLASSIFIED

MICROSOFT (MS) .NET FRAMEWORK 4.0
SECURITY TECHNICAL IMPLEMENTATION GUIDE

(STIG) OVERVIEW

Version 2, Release 2

27 October 2022

Developed by DISA for the DOD

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

ii
UNCLASSIFIED

Trademark Information

Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our users, and do not
constitute or imply endorsement by the Defense Information Systems Agency (DISA) of any
nonfederal entity, event, product, service, or enterprise.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

iii
UNCLASSIFIED

TABLE OF CONTENTS

Page

1. INTRODUCTION ...1

1.1 Executive Summary ...1
1.2 Authority ..1
1.3 Vulnerability Severity Category Code Definitions ..1
1.4 STIG Distribution ...2
1.5 Document Revisions ..2
1.6 Other Considerations ..2
1.7 Product Approval Disclaimer ...3

2. TECHNOLOGY OVERVIEW ..4

2.1 Introduction ..4
2.2 .NET Framework Topology ...5
2.3 Product Dependencies ..5
2.4 Security Considerations ...6

3. SECURITY READINESS REVIEW (SRR) ...8

3.1 SRR Overview ...8
3.2 SRR Review Method ..8
3.3 SRR Additional Considerations ...8
3.4 SRR .NET Software Publishing Table ...8

APPENDIX A - GLOSSARY OF COMMONLY USED .NET TERMS10

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

iv
UNCLASSIFIED

LIST OF TABLES

Page
Table 1-1: Vulnerability Severity Category Code Definitions ... 2
Table 2-1: Windows Installations of the .NET Framework .. 6

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

v
UNCLASSIFIED

LIST OF FIGURES

Page

Figure 3-1: Software Publishing State .. 9

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

1
UNCLASSIFIED

1. INTRODUCTION

1.1 Executive Summary
The Microsoft .NET Framework 4.0 Security Technical Implementation Guide (STIG) provides
guidance for secure configuration and usage of Microsoft’s .NET Framework version 4.0. The
STIG provides security guidance for .NET deployments in workstations or servers and focuses
on the secure configuration of the .NET Common Language Runtime (CLR). This overview
document gives technology-specific background and information on conducting a security
review for .NET Framework Version 4.0. Previous versions of .NET are not addressed
specifically, although some of the information may significantly overlap with previous versions.

1.2 Authority
Department of Defense Instruction (DODI) 8500.01 requires that “all IT [information
technology] that receives, processes, stores, displays, or transmits DOD information will be […]
configured […] consistent with applicable DOD cybersecurity policies, standards, and
architectures.” The instruction tasks that DISA “develops and maintains control correlation
identifiers (CCIs), security requirements guides (SRGs), security technical implementation
guides (STIGs), and mobile code risk categories and usage guides that implement and are
consistent with DOD cybersecurity policies, standards, architectures, security controls, and
validation procedures, with the support of the NSA/CSS [National Security Agency/Central
Security Service], using input from stakeholders, and using automation whenever possible.” This
document is provided under the authority of DODI 8500.01.

Although the use of the principles and guidelines in these SRGs/STIGs provides an environment
that contributes to the security requirements of DOD systems, applicable NIST SP 800-53
cybersecurity controls must be applied to all systems and architectures based on the Committee
on National Security Systems (CNSS) Instruction (CNSSI) 1253.

1.3 Vulnerability Severity Category Code Definitions
Severity Category Codes (referred to as CAT) are a measure of vulnerabilities used to assess a
facility or system security posture. Each security policy specified in this document is assigned a
Severity Category Code of CAT I, II, or III.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

2
UNCLASSIFIED

Table 1-1: Vulnerability Severity Category Code Definitions

 DISA Category Code Guidelines

CAT I Any vulnerability, the exploitation of which will, directly and
immediately result in loss of Confidentiality, Availability, or Integrity.

CAT II Any vulnerability, the exploitation of which has a potential to result in
loss of Confidentiality, Availability, or Integrity.

CAT III Any vulnerability, the existence of which degrades measures to
protect against loss of Confidentiality, Availability, or Integrity.

1.4 STIG Distribution
Parties within the DOD and federal government’s computing environments can obtain the
applicable STIG from the DOD Cyber Exchange website at https://cyber.mil/. This site contains
the latest copies of STIGs, SRGs, and other related security information. Those without a
Common Access Card (CAC) that has DOD Certificates can obtain the STIG from
https://public.cyber.mil/.

1.5 Document Revisions
Comments or proposed revisions to this document should be sent via email to the following
address: disa.stig_spt@mail.mil. DISA will coordinate all change requests with the relevant
DOD organizations before inclusion in this document. Approved changes will be made in
accordance with the DISA maintenance release schedule.

1.6 Other Considerations
DISA accepts no liability for the consequences of applying specific configuration settings made
on the basis of the SRGs/STIGs. It must be noted that the configuration settings specified should
be evaluated in a local, representative test environment before implementation in a production
environment, especially within large user populations. The extensive variety of environments
makes it impossible to test these configuration settings for all potential software configurations.

For some production environments, failure to test before implementation may lead to a loss of
required functionality. Evaluating the risks and benefits to a system’s particular circumstances
and requirements is the system owner’s responsibility. The evaluated risks resulting from not
applying specified configuration settings must be approved by the responsible AO. Furthermore,
DISA implies no warranty that the application of all specified configurations will make a system
100 percent secure.

Security guidance is provided for the DOD. While other agencies and organizations are free to
use it, care must be given to ensure that all applicable security guidance is applied at both the
device hardening level and the architectural level due to the fact that some settings may not be
configurable in environments outside the DOD architecture.

https://cyber.mil/
https://public.cyber.mil/
mailto:disa.stig_spt@mail.mil

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

3
UNCLASSIFIED

1.7 Product Approval Disclaimer
The existence of a STIG does not equate to DOD approval for the procurement or use of a
product.

STIGs provide configurable operational security guidance for products being used by the DOD.
STIGs, along with vendor confidential documentation, also provide a basis for assessing
compliance with cybersecurity controls/control enhancements, which supports system
assessment and authorization (A&A) under the DOD Risk Management Framework (RMF).
Department of Defense AOs may request available vendor confidential documentation for a
product that has a STIG for product evaluation and RMF purposes from disa.stig_spt@mail.mil.
This documentation is not published for general access to protect the vendor’s proprietary
information.

AOs have the purview to determine product use/approval in accordance with (IAW) DOD policy
and through RMF risk acceptance. Inputs into acquisition or pre-acquisition product selection
include such processes as:

• National Information Assurance Partnership (NIAP) evaluation for National Security
Systems (NSS) (https://www.niap-ccevs.org/) IAW CNSSP #11.

• National Institute of Standards and Technology (NIST) Cryptographic Module Validation
Program (CMVP) (https://csrc.nist.gov/groups/STM/cmvp/) IAW Federal/DOD
mandated standards.

• DOD Unified Capabilities (UC) Approved Products List (APL)
(https://www.disa.mil/network-services/ucco) IAW DODI 8100.04.

mailto:disa.stig_spt@mail.mil
https://www.niap-ccevs.org/
https://csrc.nist.gov/groups/STM/cmvp/
https://www.disa.mil/network-services/ucco

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

4
UNCLASSIFIED

2. TECHNOLOGY OVERVIEW
This section provides background information on the Microsoft .NET 4.0 Framework and
discusses general security considerations involved with using this technology. This overview
document is not intended as a comprehensive source of information on .NET. Microsoft and
other authors have produced documentation available for reference. Additionally, this STIG is
not intended as a tutorial or training tool for inexperienced SAs. Since .NET is part of an
application development and runtime architecture, knowledge of how .NET applications
function, the Windows OS and application development techniques and programming issues is a
prerequisite to understanding how to use the .NET STIG requirements.

2.1 Introduction
The .NET Framework is an application development platform that provides services for building,
deploying, and running desktop and web applications, as well as web services. It consists of two
major components: the CLR, which provides memory management and other system services,
and an extensive class library, which includes tested, reusable code for all major areas of
application development.

The .NET Framework is divided into client and development versions. The development version
is used during the application development process and the client version is utilized as a run time
engine for the finished application. For the most part, the .NET Framework is completely
transparent to end-users if they do not perform application development tasks within the
Framework. Unless the user is developing .NET applications, the lighter client version is the
desired version to install on user and host systems. .NET is designed to meet the following
objectives.

• To provide a consistent object-oriented programming environment whether object code is
stored and executed locally, executed locally but Internet-distributed, or executed
remotely.

• To provide a code-execution environment that minimizes software deployment and
versioning conflicts.

• To provide a code-execution environment that promotes safe execution of code, including
code created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance problems of
scripted or interpreted environments.

• To make the developer experience consistent across widely varying types of applications,
such as Windows-based applications and Web-based applications.

• To build all communication on industry standards to ensure that code based on the .NET
Framework can integrate with any other code.

.NET applications are targeted to a specific .NET Framework version and require the appropriate
Framework version to be installed in order to function.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

5
UNCLASSIFIED

2.2 .NET Framework Topology
The .NET Framework has two main components: the CLR and the .NET Framework Class
Library. The CLR is the foundation of the .NET Framework and acts as an agent responsible for
managing application code at execution time. The CLR provides memory management, thread
management, and remoting services.

The CLR also enforces programmatic type safety, which helps to prevent erroneous or
undesirable program behavior caused by discrepancies between differing data types.

Application code that targets the runtime is known as managed code, while application code that
does not target the runtime is known as unmanaged code. The class library, the other main
component of the .NET Framework, is a comprehensive, object-oriented collection of reusable
types that can be used to develop applications ranging from traditional command-line or
graphical user interface (GUI) applications to applications based on the latest innovations
provided by ASP.NET, such as Web Forms and XML Web services.

The .NET version 4.0 guidance focuses on securing the CLR and how applications utilize the
CLR rather than addressing the use of the .NET class library.

2.3 Product Dependencies
Each version of the .NET Framework including version 4.0 contains the CLR as its core
component, and includes additional components, such as the base class libraries and other
managed libraries. Every new version of the .NET Framework retains features from the previous
versions and adds new features.

Although the CLR is the core component of the .NET Framework, the CLR is identified by its
own version number apart from the .NET Framework version number. Some versions of the
.NET Framework include a new version of the CLR, but others use an earlier version. For
example, the .NET Framework version 4 includes CLR version 4, but the .NET Framework 3.5
includes CLR 2.0. (There is no version 3 of the CLR.)

Previous versions of the .NET Framework or the CLR do not have to be installed before
installing the latest version; each version provides the necessary components.

Some versions of the .NET Framework are installed automatically with the Windows operating
system, but other versions must be installed separately. Table 1-2 identifies the .NET Framework
versions and whether they are integrated into the installation of Windows or if they must be
installed separately.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

6
UNCLASSIFIED

Table 2-1: Windows Installations of the .NET Framework

.NET Framework Versions Windows Versions

1.0, 1.1, and 2.0
Not installed as part of the Windows operating system,
but can be installed separately on Windows XP and
earlier versions of Windows.

3.0 (and 2.0 SP2, which provides
support for versions 3.0 and 3.5) Installed by Windows Vista and Windows Server 2008.

3.5 SP1 Installed by Windows 7.

4
Not installed as part of the Windows operating system,
but can be installed separately on Windows XP, Windows
Server 2003, and later versions of Windows.

The .NET Framework 4 is backward-compatible with applications built with previous versions
of the Framework. Most applications and components built with previous versions of the .NET
Framework will work on the .NET Framework 4. However, in practice, this compatibility can be
broken by changes in the .NET Framework that conflict with methods employed in application
programming. For example, using a hard-coded path to .NET Framework assemblies (programs),
performing an equality comparison with a particular version of the .NET Framework, and getting
the value of a private field by using reflection are not backward-compatible practices.

In addition, each version of the .NET Framework includes bug fixes and security-related changes
that can affect the compatibility of some applications and components.

.NET Framework applications and components must be tested to ensure they are compatible with
other versions of the .NET Framework before using the applications in a production
environment.

2.4 Security Considerations
With the advent of .NET version 4, the security model of the Framework has changed
considerably. In version 4, the .NET Framework no longer enforces security policy and the role
of policy enforcement is now relegated to operating system layer components and runtime hosts.

Historically, the .NET Framework has provided code access security (CAS) policy as a
mechanism to tightly control and configure the capabilities of managed code (.NET
applications). Although CAS policy is powerful, it can be complicated and restrictive.
Furthermore, CAS policy does not apply to native applications which are applications not
controlled by the .NET CLR, so the security guarantees offered by CAS policy are limited.

In .NET Framework version 4, machine-wide security policy is turned off by default.
Applications that are not hosted (that is, applications that are executed through Windows

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

7
UNCLASSIFIED

Explorer or from a command prompt) now run as full trust. This includes all applications that
reside on shares on the local network. Hosted or sandboxed applications continue to run with
trust policies that are decided by their hosts (for example, by Internet Explorer, ClickOnce, or
ASP.NET). Applications or controls that run in sandboxes are considered partially trusted.

To control the execution of applications, dll libraries, and scripts, system administrators must
now use tools that function at the operating system layer rather than utilizing .NET Framework
tools, such as CASPOL.EXE or MSCORCFG.EXE. Microsoft provides two tools to control
application execution at the operating system level; they are Software Security Policies and
AppLocker. Both of these tools are implemented via Group Policy.

The transparency model has also been applied to the .NET Framework. Applications and
controls that run in a host or sandbox with the limited permission set granted by the sandbox are
considered transparent. Transparency means there does not have to be concern about checking
CAS policy when running partially trusted applications. Transparent applications just run using
their grant set.

By utilizing the transparency model, sandboxing methods, Software Security Policies and
AppLocker, security protection capabilities are enhanced to address .NET applications, as well
as native code applications that run outside the protections offered by the CLR.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

8
UNCLASSIFIED

3. SECURITY READINESS REVIEW (SRR)

3.1 SRR Overview
The .NET Framework Security Readiness Review (SRR) targets conditions that undermine the
integrity of security, contribute to inefficient security operations and administration, or may
lead to interruption of production operations. Additionally, the review ensures the site has
properly installed and implemented the .NET environment and it is being managed in a way
that is secure, efficient, and effective. The items reviewed are based on the NSA guide, Guide
to Microsoft .NET Framework Security and vendor recommendations provided by Microsoft.
The results of the review should be recorded in the SRR Results section with the following
status designations: F- Finding, N/F- Not A Finding, N/A- Not Applicable, MR- Manual
Review, or NR- Not Reviewed. The items reviewed are based on standards and practices
published by Microsoft® (the vendor) and other security guidance entities, following guidance
published in the Department of Defense Instruction (DODI) 8500.2 and National Institute for
Standards and Technology (NIST) Special Publication (SP) 800-53 security controls.

Defense Information Systems Agency (DISA) Field Security Operations (FSO) has assigned a
level of urgency to each finding based on Chief Information Officer (CIO)-established criteria
for Certification and Accreditation (C&A). All findings are based on regulations and guidelines.
All findings require correction by the host organization.

3.2 SRR Review Method
To perform a successful SRR, this document and accompanying STIG provide the methods to
assess vulnerabilities on systems running Microsoft® .NET 4.0. To perform a successful SRR, a
manual process must be employed. There are currently no automated tools to check for
compliance with this checklist.

Since each version of the .NET Framework is configured separately, an SRR must be performed
against each version of the .NET Framework that is installed on the system. This guidance
pertains to .NET Framework version 4.0 only. When conducting an SRR on a previous version
of the .NET Framework, refer to existing guidance for instructions that address previous versions
of the Framework.

3.3 SRR Additional Considerations
To create these STIG requirements, the principles and guidelines found in the DODI 8500.2 IA
controls were applied to version 4.0 of the .NET Framework. The .NET 4.0 configuration tested
was a basic default installation without third party applications installed or other enhancement.

3.4 SRR .NET Software Publishing Table
The following table may be used during the SRR process as a guide to help in understanding the
overall functionality of the Windows Software Publishing Table. The functionality displayed in

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

9
UNCLASSIFIED

the table columns is configured via a Windows registry setting. The hexadecimal value set in the
Windows registry directly affects system behavior relating to Windows Authenticode.

Authenticode is a Microsoft technology provided with the Windows OS that is used to validate
signed application certificates.

Figure 3-1: Software Publishing State

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

10
UNCLASSIFIED

APPENDIX A - GLOSSARY OF COMMONLY USED .NET TERMS

Application domain: The logical and physical boundary created around every .NET
application by the Common Language Runtime (CLR). The CLR can allow multiple .NET
applications to be run in a single process by loading them into separate application domains.
The CLR isolates each application domain from all other application domains and prevents the
configuration, security, or stability of a running .NET application from affecting other
applications. Objects can only be moved between application domains by the use of remoting.

Assembly: All of the files that comprise a .NET application, including the resource, security
management, versioning, sharing, deployment information, and the actual MSIL code executed
by the CLR. An assembly may appear as a single DLL or EXE file, or as multiple files, and is
roughly the equivalent of a COM module.

Code Access Security (CAS): A mechanism provided by the CLR whereby managed code is
granted permissions by security policy and these permissions are enforced, helping to limit the
operations that the code will be allowed to perform. This model was changed in .NET 4.0 and
policy is no longer enforced in the Framework.

Common Language Runtime (CLR): The engine at the core of managed code execution. The
runtime supplies managed code with services, such as cross-language integration, code access
security, object lifetime management, and debugging and profiling support.

Common Language Runtime Host (Runtime Host): An unmanaged application that uses a set
of APIs, called the hosting interfaces, to integrate managed code into the application. Common
language runtime hosts often require a high degree of customization over the runtime that is
loaded into the process. The hosting interfaces allow common language runtime hosts to specify
settings that configure the garbage collector, select the appropriate build for their environment
(server versus workstation), and so on. Common language runtime hosts often support an
extensibility model that allows the end user to dynamically add new pieces of functionality, such
as a new control or a user-written function. These extensions are typically isolated from each
other in the process using application domains and custom security settings. Examples of
common language runtime hosts include ASP.NET, Microsoft Internet Explorer, and a host to
run executables launched from the Windows Shell. See also: application domain, common
language runtime, managed code.

Configuration File: An XML file with the .config extension that contains option settings for an
application or web site. Common configuration files include Machine.config, Web.config and
“ApplicationName”.exe.config where “ApplicationName” is a variable value representing the
name of the executable file.

Evidence: Evidence is information about an assembly, such as a digital signature or the zone or
site of its origin. Evidence may be contained in the assembly itself or may be presented by the
host. There are currently seven types of evidence in the .NET Framework. These evidence types
are:

• Application Directory – The directory where the assembly resides.

UNCLASSIFIED
MS .NET Framework 4.0 STIG Overview, V2R2 DISA
27 October 2022 Developed by DISA for the DOD

11
UNCLASSIFIED

• Hash – A cryptographic hash of the assembly.
• Publisher – The publisher of the application, based upon Authenticode signing of the

assembly.
• Site – The site where the assembly originated. This is only valid when the assembly is

executed directly from the site.
• StrongName – A cryptographic signing of the assembly.
• URL – The URL where the assembly originated. This is only valid when the assembly is

executed directly from the URL.
• Zone – The Internet Explorer Security Zone associated with the site of origin for the

assembly.

Managed Code: Code executed by the common language runtime environment rather than
directly by the operating system. Managed code applications gain common language runtime
services, such as automatic garbage collection, runtime type checking and security support, and
so on. These services help provide uniform platform- and language-independent behavior of
managed-code applications. See also: unmanaged code.

Native code: Code that has been compiled to processor-specific machine code.

Remoting: The process of communication between different operating system processes,
regardless of whether they are on the same computer. The .NET Framework remoting system is
an architecture designed to simplify communication between objects living in different
application domains, whether on the same computer or not, and between different contexts,
whether in the same application domain or not. See also: application domain.

Security Policy: The active policy established by the administrator that programmatically
generates granted permissions for all managed code based on the code's requested permissions.
Code that requires more permissions than policy will grant is not allowed to run.

Unmanaged Code: Code that is executed directly by the operating system, outside the common
language runtime environment. Unmanaged code must provide its own garbage collection, type
checking, security support, and so on, unlike managed code, which receives these services from
the common language runtime. See also: Managed Code.

	1. Introduction
	1.1 Executive Summary
	1.2 Authority
	1.3 Vulnerability Severity Category Code Definitions
	1.4 STIG Distribution
	1.5 Document Revisions
	1.6 Other Considerations
	1.7 Product Approval Disclaimer
	1.8

	2. technology overview
	2.1 Introduction
	2.2 .NET Framework Topology
	2.3 Product Dependencies
	2.4 Security Considerations

	3. security readiness review (srr)
	3.1 SRR Overview
	3.2 SRR Review Method
	3.3 SRR Additional Considerations
	3.4 SRR .NET Software Publishing Table

	APPENDIX A - GLOSSARY of COMMONLY USED .NET TERMS

