UNCLASSIFIED

MICROSOFT (MS) .NET FRAMEWORK 4.0
SECURITY TECHNICAL IMPLEMENTATION GUIDE
(STIG) OVERVIEW

Version 2, Release 7

02 July 2025

Developed by DISA for the DOD

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

Trademark Information

Names, products, and services referenced within this document may be the trade names, trademarks,
or service marks of their respective owners. References to commercial vendors and their products or
services are provided strictly as a convenience to our users, and do not constitute or imply
endorsement by the Defense Information Systems Agency (DISA) of any nonfederal entity, event,
product, service, or enterprise.

il
UNCLASSIFIED

UNCLASSIFIED

MS .NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD
TABLE OF CONTENTS

Page

1. INTRODUCTION.....cciiitiiiitiiiiiieiitieciiiecniiecnisesssseessssesssssessssssesssessssssssssssssssessssseens 1
1.1 EXECULIVE SUMMALY ..c.oiiiiiiiiiiiiiiieieiciiitteeett ettt ettt a et eae 1
1.2 AUEROLILY ottt 1
1.3 Vulnerability Severity Category Code Definitions........ocovuviviriiiiiicieeeececseeece 1
1.4 STIG DIStIDULON ..ot 2
1.5 Document REVISIONS ..o 2
1.6 Other CONSIACIALIONSvuvrieiiiiiaieeieiriiieieerete ettt ettt ettt s s senseanans 2
1.7 Product Approval DISCIaIMETcccciiiuiiiiiiiiiiiiiiiiiiirr e 3

2. TECHNOLOGY OVERVIEWcoiiiiiiiiiiiiiiiiniieenieenneesnsessssesssseesssseessssessssssens 4
2.1 INEOAUCHON .ot 4
2.2 NET Framework TOPOology ..o 4
2.3 Product Dependencies........cccociiiiininiiniiiiccceie e 5
2.4 Secufity CONSIAEIAIONS ...vviuiviviiiiiiriiiiicriie s 6

3. SECURITY READINESS REVIEW (SRR) ..uutiiiiiiiiiiiiiieeinitneectineecnnneeecnnnneeens 8
3.1 SRR OVEIVIEW ..ottt bbbt 8
3.2 SRR RevIeW MethOd ..o s 8
3.3 SRR Additional CONSIAETAIONSc.vueuieieieieiiiieieieiereieieieieieieiessse sttt e seseseseseseses 8
3.4 SRR .NET Software Publishing Tableccccccoiiiiiiiiiniiiiiiiicccscecenens 8
APPENDIX A: GLOSSARY OF COMMONLY USED .NET TERMS.......cccccccvviiinnureeennnne 10
iii

UNCLASSIFIED

UNCLASSIFIED

MS .NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD
LIST OF TABLES
Page
Table 1-1: Vulnerability Severity Category Code Definitionsccceuveeieuerriieienrinieieiriieensisseenseneeenens 2
Table 2-1: Windows Installations of the NET Framework.........cccccovvvivinninininiiiiicicccccecene 6
v

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7
02 July 2025

UNCLASSIFIED
DISA

Developed by DISA for the DOD

Figure 3-1: Software Publishing State

LIST OF FIGURES

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

1. INTRODUCTION

1.1 Executive Summary

The Microsoft NET Framework 4.0 Security Technical Implementation Guide (STIG) provides
guidance for secure configuration and usage of Microsoft’s NET Framework version 4.0. The STIG
provides security guidance for NET deployments in workstations or servers and focuses on the
secure configuration of the NET Common Language Runtime (CLR). This overview document
gives technology-specific background and information on conducting a security review for NET
Framework Version 4.0. Previous versions of NET are not addressed specifically, although some of
the information may significantly overlap with previous versions.

1.2 Authority

Department of Defense Instruction (IDODI) 8500.01 requires that “all I'T [information technology]
that receives, processes, stores, displays, or transmits DOD information will be [...] configured |...]
consistent with applicable DOD cybersecurity policies, standards, and architectures.” The
instruction tasks that DISA “develops and maintains control correlation identifiers (CCls), security
requirements guides (SRGs), security technical implementation guides (STIGs), and mobile code risk
categories and usage guides that implement and are consistent with DOD cybersecurity policies,
standards, architectures, security controls, and validation procedures, with the support of the
NSA/CSS [National Security Agency/Central Security Service], using input from stakeholders, and
using automation whenever possible.” This document is provided under the authority of DODI
8500.01.

Although the use of the principles and guidelines in these SRGs/STIGs provides an environment
that contributes to the security requirements of DOD systems, applicable NIST SP 800-53
cybersecurity controls must be applied to all systems and architectures based on the Committee on
National Security Systems (CNSS) Instruction (CNSSI) 1253.

1.3 Vulnerability Severity Category Code Definitions

Severity Category Codes (referred to as CAT) are a measure of vulnerabilities used to assess a facility
ot system security posture. Each security policy specified in this document is assigned a Severity
Category Code of CAT I, I, or III.

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

Table 1-1: Vulnerability Severity Category Code Definitions

Category | DISA Category Code Guidelines

CATI Any vulnerability, the exploitation of which will, directly and
immediately result in loss of Confidentiality, Availability, or Integrity.

CAT II Any vulnerability, the exploitation of which has a potential to result in
loss of Confidentiality, Availability, or Integrity.

CATIII | Any vulnerability, the existence of which degrades measures to protect
against loss of Confidentiality, Availability, or Integrity.

1.4 STIG Distribution

Parties within the DOD and federal government’s computing environments can obtain the
applicable STIG from the DOD Cyber Exchange website at https://cyber.mil/. This site contains
the latest copies of STIGs, SRGs, and other related security information. Those without a Common
Access Card (CAC) that has DOD Certtificates can obtain the STIG from https://public.cyber.mil/.

1.5 Document Revisions

Comments or proposed revisions to this document should be sent via email to the following
address: disa.stig_spt@mail.mil. DISA will coordinate all change requests with the relevant DOD
organizations before inclusion in this document. Approved changes will be made in accordance with
the DISA maintenance release schedule.

1.6 Other Considerations

DISA accepts no liability for the consequences of applying specific configuration settings made on
the basis of the SRGs/STIGs. It must be noted that the configuration settings specified should be
evaluated in a local, representative test environment before implementation in a production
environment, especially within large user populations. The extensive variety of environments makes
it impossible to test these configuration settings for all potential software configurations.

For some production environments, failure to test before implementation may lead to a loss of
required functionality. Evaluating the risks and benefits to a system’s particular circumstances and
requirements is the system owner’s responsibility. The evaluated risks resulting from not applying
specified configuration settings must be approved by the responsible AO. Furthermore, DISA
implies no warranty that the application of all specified configurations will make a system 100
percent secure.

Security guidance is provided for the DOD. While other agencies and organizations are free to use
it, care must be given to ensure that all applicable security guidance is applied at both the device
hardening level and the architectural level due to the fact that some settings may not be configurable
in environments outside the DOD architecture.

UNCLASSIFIED

https://cyber.mil/
https://public.cyber.mil/
mailto:disa.stig_spt@mail.mil

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

1.7 Product Approval Disclaimer

The existence of a STIG does not equate to DOD approval for the procurement or use of a
product.

STIGs provide configurable operational security guidance for products being used by the DOD.
STIGs, along with vendor confidential documentation, also provide a basis for assessing compliance
with cybersecurity controls/control enhancements, which supports system assessment and
authorization (A&A) under the DOD Risk Management Framework (RMF). Department of
Defense AOs may request available vendor confidential documentation for a product that has a
STIG for product evaluation and RMF purposes from disa.stig_spt@mail.mil. This documentation
is not published for general access to protect the vendot’s proprietary information.

AOs have the putview to determine product use/approval in accordance with IAW) DOD policy
and through RMF risk acceptance. Inputs into acquisition or pre-acquisition product selection
include such processes as:

e National Information Assurance Partnership (NIAP) evaluation for National Security
Systems (NSS) (https://www.niap-ccevs.org/) IAW CNSSP #11.

e National Institute of Standards and Technology (NIST) Cryptographic Module Validation
Program (CMVP) (https://cste.nist.gov/groups/STM/cmvp/) IAW Federal/ DOD
mandated standards.

e DODIN Approved Products List (APL) (https://aplits.disa.mil/processAPList.action) TAW
DODI 8100.04.

UNCLASSIFIED

mailto:disa.stig_spt@mail.mil
https://www.niap-ccevs.org/
https://csrc.nist.gov/groups/STM/cmvp/
https://aplits.disa.mil/processAPList.action

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

2. TECHNOLOGY OVERVIEW

This section provides background information on the Microsoft .NET 4.0 Framework and discusses
general security considerations involved with using this technology. This overview document is not
intended as a comprehensive source of information on .NET. Microsoft and other authors have
produced documentation available for reference. Additionally, this STIG is not intended as a tutorial
ot training tool for inexperienced SAs. Since .NET is part of an application development and
runtime architecture, knowledge of how .NET applications function, the Windows OS and
application development techniques and programming issues is a prerequisite to understanding how
to use the .NET STIG requirements.

2.1 Introduction

The NET Framework is an application development platform that provides services for building,
deploying, and running desktop and web applications, as well as web services. It consists of two
major components: the CLR, which provides memory management and other system services, and
an extensive class library, which includes tested, reusable code for all major areas of application
development.

The NET Framework is divided into client and development versions. The development version is
used during the application development process and the client version is utilized as a run time
engine for the finished application. For the most part, the NET Framework is completely
transparent to end-users if they do not perform application development tasks within the
Framework. Unless the user is developing NET applications, the lighter client version is the desired
version to install on user and host systems. INET is designed to meet the following objectives.

e To provide a consistent object-oriented programming environment whether object code is
stored and executed locally, executed locally but Internet-distributed, or executed remotely.

e To provide a code-execution environment that minimizes software deployment and
versioning conflicts.

e To provide a code-execution environment that promotes safe execution of code, including
code created by an unknown or semi-trusted third party.

e To provide a code-execution environment that eliminates the performance problems of
scripted or interpreted environments.

e To make the developer experience consistent across widely varying types of applications,
such as Windows-based applications and Web-based applications.

e To build all communication on industry standards to ensure that code based on the NET
Framework can integrate with any other code.

NET applications are targeted to a specific NET Framework version and require the appropriate
Framework version to be installed in order to function.

2.2 .NET Framework Topology

The NET Framework has two main components: the CLR and the .NET Framework Class Library.
The CLR is the foundation of the .NET Framework and acts as an agent responsible for managing

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

application code at execution time. The CLR provides memory management, thread management,
and remoting services.

The CLR also enforces programmatic type safety, which helps to prevent erroneous or undesirable
program behavior caused by discrepancies between differing data types.

Application code that targets the runtime is known as managed code, while application code that
does not target the runtime is known as unmanaged code. The class library, the other main
component of the NET Framework, is a comprehensive, object-oriented collection of reusable
types that can be used to develop applications ranging from traditional command-line or graphical
user interface (GUI) applications to applications based on the latest innovations provided by
ASP.NET, such as Web Forms and XML Web services.

The .NET version 4.0 guidance focuses on securing the CLR and how applications utilize the CLR
rather than addressing the use of the .NET class library.

2.3 Product Dependencies

Each version of the NET Framework including version 4.0 contains the CLR as its core
component, and includes additional components, such as the base class libraries and other managed
libraries. Every new version of the .NET Framework retains features from the previous versions and
adds new features.

Although the CLR is the core component of the NET Framework, the CLR is identified by its own
version number apart from the NET Framework version number. Some versions of the NET
Framework include a new version of the CLR, but others use an earlier version. For example, the
NET Framework version 4 includes CLR version 4, but the NET Framework 3.5 includes CLR
2.0. (There is no version 3 of the CLR.)

Previous versions of the NET Framework or the CLR do not have to be installed before installing
the latest version; each version provides the necessary components.

Some versions of the NET Framework are installed automatically with the Windows operating
system, but other versions must be installed separately. Table 1-2 identifies the NET Framework
versions and whether they are integrated into the installation of Windows or if they must be installed
separately.

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

Table 2-1: Windows Installations of the NET Framework

NET Framework Versions Windows Versions

Not installed as part of the Windows operating system but can
1.0, 1.1, and 2.0 be installed separately on Windows XP and earlier versions of
Windows.

3.0 (and 2.0 SP2, which
provides support for versions |Installed by Windows Vista and Windows Server 2008.
3.0 and 3.5)

3.5S8P1 Installed by Windows 7.

Not installed as part of the Windows operating system, but can
4 be installed separately on Windows XP, Windows Server 2003,
and later versions of Windows.

The NET Framework 4 is backward-compatible with applications built with previous versions of
the Framework. Most applications and components built with previous versions of the NET
Framework will work on the NET Framework 4. However, in practice, this compatibility can be
broken by changes in the .NET Framework that conflict with methods employed in application
programming. For example, using a hard-coded path to NET Framework assemblies (programs),
performing an equality comparison with a particular version of the NET Framework, and getting
the value of a private field by using reflection are not backward-compatible practices.

In addition, each version of the .NET Framework includes bug fixes and security-related changes
that can affect the compatibility of some applications and components.

NET Framework applications and components must be tested to ensure they are compatible with
other versions of the NET Framework before using the applications in a production environment.

2.4 Security Considerations

With the advent of NET version 4, the security model of the Framework has changed considerably.
In version 4, the NET Framework no longer enforces security policy and the role of policy
enforcement is now relegated to operating system layer components and runtime hosts.

Historically, the NET Framework has provided code access security (CAS) policy as a mechanism
to tightly control and configure the capabilities of managed code (NET applications). Although
CAS policy is powerful, it can be complicated and restrictive. Furthermore, CAS policy does not
apply to native applications which are applications not controlled by the .NET CLR, so the security
guarantees offered by CAS policy are limited.

In NET Framework version 4, machine-wide security policy is turned off by default. Applications
that are not hosted (that is, applications that are executed through Windows Explorer or from a
command prompt) now run as full trust. This includes all applications that reside on shares on the

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

local network. Hosted or sandboxed applications continue to run with trust policies that are decided
by their hosts (for example, by Internet Explorer, ClickOnce, or ASP.NET). Applications or
controls that run in sandboxes are considered partially trusted.

To control the execution of applications, dll libraries, and scripts, system administrators must now
use tools that function at the operating system layer rather than utilizing NET Framework tools,
such as CASPOL.EXE or MSCORCFG.EXE. Microsoft provides two tools to control application
execution at the operating system level; they are Software Security Policies and AppLocker. Both of
these tools are implemented via Group Policy.

The transparency model has also been applied to the NET Framework. Applications and controls
that run in a host or sandbox with the limited permission set granted by the sandbox are considered
transparent. Transparency means there does not have to be concern about checking CAS policy
when running partially trusted applications. Transparent applications just run using their grant set.

By utilizing the transparency model, sandboxing methods, Software Security Policies and
AppLocker, security protection capabilities are enhanced to address NET applications, as well as
native code applications that run outside the protections offered by the CLR.

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

3. SECURITY READINESS REVIEW (SRR)

3.1 SRR Overview

The NET Framework Security Readiness Review (SRR) targets conditions that undermine the
integrity of security, contribute to inefficient security operations and administration, or may lead
to interruption of production operations. Additionally, the review ensures the site has properly
installed and implemented the .NET environment and it is being managed in a way that is secure,
efficient, and effective. The items reviewed are based on the NSA guide, Guide to Microsoft NET
Framework Security and vendor recommendations provided by Microsoft. The results of the review
should be recorded in the SRR Results section with the following status designations: F- Finding,
N/F- Not A Finding, N/A- Not Applicable, MR- Manual Review, or NR- Not Reviewed. The
items reviewed are based on standards and practices published by Microsoft® (the vendor) and
other security guidance entities, following guidance published in the Department of Defense
Instruction (DODI) 8500.2 and National Institute for Standards and Technology (NIST) Special
Publication (SP) 800-53 security controls.

Defense Information Systems Agency (DISA) Field Security Operations (FSO) has assigned a level
of urgency to each finding based on Chief Information Officer (CIO)-established criteria

for Certification and Accreditation (C&A). All findings are based on regulations and guidelines. All
tindings require correction by the host organization.

3.2 SRR Review Method

To perform a successful SRR, this document and accompanying STIG provide the methods to
assess vulnerabilities on systems running Microsoft® .NET 4.0. To perform a successful SRR, a
manual process must be employed. There are currently no automated tools to check for compliance
with this checklist.

Since each version of the .NET Framework is configured separately, an SRR must be performed
against each version of the NET Framework that is installed on the system. This guidance pertains
to .NET Framework version 4.0 only. When conducting an SRR on a previous version of the NET
Framework, refer to existing guidance for instructions that address previous versions of the
Framework.

3.3 SRR Additional Considerations

To create these STIG requirements, the principles and guidelines found in the DODI 8500.2 TA
controls were applied to version 4.0 of the .NET Framework. The NET 4.0 configuration tested
was a basic default installation without third party applications installed or other enhancement.

3.4 SRR .NET Software Publishing Table

The following table may be used during the SRR process as a guide to help in understanding the
overall functionality of the Windows Software Publishing Table. The functionality displayed in the
table columns is configured via a Windows registry setting. The hexadecimal value set in the
Windows registry directly affects system behavior relating to Windows Authenticode.

UNCLASSIFIED

UNCLASSIFIED

DISA

Developed by DISA for the DOD

¥

MS NET Framework 4.0 STIC

02 July 2025

Overview, V2R7

Authenticode is a Microsoft technology provided with the Windows OS that is used to validate

signed application certificates.

State

ing

.

Software Publish:

Figure 3-1

=
» m _
T
o
w
) m If Bits 6 & 8 = 0 Trust the Test Root = FALSE
T
@
If Bits 6 & 8 = 0 Trust the Test Root = FALSE
m
If Bit 8 = 0 Use expiration date on certificates = TRUE
8 A ITBit 10 = 0 Check the revocation list = TRUE
N NEIE
fBit 11 = 0 Offline revocation server OF (Individual) = FALSE
o
fEit 12 = 0 Offline revocation server OK (Commercial] = FALSE
]
fBit 13 = 0 Java offline revocation server OK (Individual) = FALSE
T
a ™ Bit 14 = 0 Java offline revocation server 0K [Commercial] = FALSE
&
5 fBit 17 = 1 Invalidate version 1 signed objects = TRUE
=] fBit 18 = 0 Check the revocation list on Time Stamp Signer = TRUH
n
m 7 IfBit 19 = 0 Only trust items found in the Trust DB = FALSE
]
i
L]
& m; aE
=] =
= m |

UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

APPENDIX A: GLOSSARY OF COMMONLY USED .NET TERMS

Application domain: The logical and physical boundary created around every NET application
by the Common Language Runtime (CLR). The CLR can allow multiple NET applications to be
run in a single process by loading them into separate application domains. The CLR isolates each
application domain from all other application domains and prevents the configuration, security, or
stability of a running NET application from affecting other applications. Objects can only be
moved between application domains by the use of remoting.

Assembly: All of the files that comprise a NET application, including the resource, security
management, versioning, sharing, deployment information, and the actual MSIL code executed by
the CLR. An assembly may appear as a single DLL or EXE file, or as multiple files, and is roughly
the equivalent of a COM module.

Code Access Security (CAS): A mechanism provided by the CLR whereby managed code is
granted permissions by security policy and these permissions are enforced, helping to limit the
operations that the code will be allowed to perform. This model was changed in .NET 4.0 and
policy is no longer enforced in the Framework.

Common Language Runtime (CLR): The engine at the core of managed code execution. The
runtime supplies managed code with services, such as cross-language integration, code access
security, object lifetime management, and debugging and profiling support.

Common Language Runtime Host (Runtime Host): An unmanaged application that uses a set
of APIs, called the hosting interfaces, to integrate managed code into the application. Common
language runtime hosts often require a high degree of customization over the runtime that is loaded
into the process. The hosting interfaces allow common language runtime hosts to specify settings
that configure the garbage collector, select the appropriate build for their environment (server versus
workstation), and so on. Common language runtime hosts often support an extensibility model that
allows the end user to dynamically add new pieces of functionality, such as a new control or a user-
written function. These extensions are typically isolated from each other in the process using
application domains and custom security settings. Examples of common language runtime hosts
include ASP.NET, Microsoft Internet Explorer, and a host to run executables launched from the
Windows Shell. See also: application domain, common language runtime, managed code.

Configuration File: An XML file with the .config extension that contains option settings for an
application or web site. Common configuration files include Machine.config, Web.config, and
“ApplicationName”.exe.config where “ApplicationName” is a variable value representing the name
of the executable file.

Evidence: Evidence is information about an assembly, such as a digital signature or the zone or site
of its origin. Evidence may be contained in the assembly itself or may be presented by the host.
There are currently seven types of evidence in the NET Framework. These evidence types are:

e Application Directory — The directory where the assembly resides.

e Hash — A cryptographic hash of the assembly.

10
UNCLASSIFIED

UNCLASSIFIED

MS NET Framework 4.0 STIG Overview, V2R7 DISA
02 July 2025 Developed by DISA for the DOD

e Publisher — The publisher of the application, based upon Authenticode signing of the
assembly.

e Site — The site where the assembly originated. This is only valid when the assembly is
executed directly from the site.

e StrongName — A cryptographic signing of the assembly.

e URL — The URL where the assembly originated. This is only valid when the assembly is
executed directly from the URL.

e Zone — The Internet Explorer Security Zone associated with the site of origin for the
assembly.

Managed Code: Code executed by the common language runtime environment rather than directly
by the operating system. Managed code applications gain common language runtime services, such
as automatic garbage collection, runtime type checking and security support, and so on. These
services help provide uniform platform- and language-independent behavior of managed-code
applications. See also: unmanaged code.

Native code: Code that has been compiled to processot-specific machine code.

Remoting: The process of communication between different operating system processes, regardless
of whether they are on the same computer. The .NET Framework remoting system is an
architecture designed to simplify communication between objects living in different application
domains, whether on the same computer or not, and between different contexts, whether in the
same application domain or not. See also: application domain.

Security Policy: The active policy established by the administrator that programmatically generates
granted permissions for all managed code based on the code's requested permissions. Code that
requires more permissions than policy will grant is not allowed to run.

Unmanaged Code: Code that is executed directly by the operating system, outside the common
language runtime environment. Unmanaged code must provide its own garbage collection, type
checking, security support, and so on, unlike managed code, which receives these services from the
common language runtime. See also: Managed Code.

11
UNCLASSIFIED

	1. Introduction
	1.1 Executive Summary
	1.2 Authority
	1.3 Vulnerability Severity Category Code Definitions
	1.4 STIG Distribution
	1.5 Document Revisions
	1.6 Other Considerations
	1.7 Product Approval Disclaimer
	1.8

	2. technology overview
	2.1 Introduction
	2.2 .NET Framework Topology
	2.3 Product Dependencies
	2.4 Security Considerations

	3. security readiness review (srr)
	3.1 SRR Overview
	3.2 SRR Review Method
	3.3 SRR Additional Considerations
	3.4 SRR .NET Software Publishing Table

	APPENDIX A: GLOSSARY of COMMONLY USED .NET TERMS

